Skip to main content

My Fish Just Sent Me A Text Message

The Internet of Things makes it easy for us to monitor our homes. Today I’m taking that concept one step further—getting our homes to report back to us. 
In early March, I wrote about using Raspberry Pi to quantify my fish tank—in short, I taught the $35 single-board computer to monitor the temperature of my home aquarium no matter where I was in the apartment. Of course, the limitations of this project were clear: I could only keep tabs on the tank while on my home network. What if I want my fish to text me when it needs my assistance? 


The problem, until now, was that getting the Raspberry Pi to initiate communication was hard. I experimented with a Node.jsreceiving application, and contemplated buying a server from which to run it (since my Bluehost server space doesn’t support a Node installation). The other way to get the Raspberry Pi to talk to me was to teach it to text my phone. There are also many ways to achieve SMS support in Python, Pi’s primary language, but they all either involve money or writing programs that are way over my head. 
However, I wouldn’t be writing this article if I didn’t eventually find a way to do it. The answer turned out to be Twilio, a developer-friendly set of tools for creating SMS, voice, and VoIP applications. Twilio charges pennies for calls and text messages to any phone, but it's free to develop programs that text your own phone. That second part might not sound useful at first, but it’s exactly what I needed to complete my fish tank project.
I met with Matthew Makai, Twilio’s DC-based developer evangelist, and he helped me solve the problem. It only took nine lines of code. 
If you’ve already finished the first tutorial, here’s all you need to do. 

Sign Up For Twilio

Don’t worry, it’s free. Signing up for Twilio will give you a phone number to assign to the Raspberry Pi and credentials for using the Twilio API.  
Your phone number will probably begin with the area code of wherever you sign up. 

Read More





Comments

Popular posts from this blog

PIC 16F877A Microcontroller Based Electronic Lock 16x2LCD 4x3 Keypad

 Circuit Diagram Security is a prime concern in our day-today life. Everyone wants to be as much secure as possible. An access control for doors forms a vital link in a security chain. The microcontroller based digital lock for Doors is an access control system that allows only authorized persons to access a restricted area. An electronic lock or digital lock is a device which has an electronic control assembly attached to it. They are provided with an access control system. This system allows the user to unlock the device with a password. The password is entered by making use of a keypad. The user can also set his password to ensure better protection. The major components include a Keypad, LCD and the controller PIC16F877A. This article describes the making of an electronic code lock using the 16F877A microcontroller. The system is fully controlled by the 8 bit microcontroller 16F877A which has a 8Kbytes of ROM for the program memory. The password is stored in the

Electronic Voting Machine Using 8051 Microcontroller (AT89C51)

  Circuit Electronic voting machine has now replaced the traditional mechanism of voting due to several advantages like security, automatic counting etc. This project presents a way to develop an electronic voting machine which displays the count of votes on a 16x2 LCD interface. A user can get his/her vote register through a set of switches (one for each candidate). After every cast of vote, the subsequent count can be seen on LCD. The circuit uses AT89C51 microcontroller and the code for the project has been written in C. This LCD based electronic voting machine is designed for four candidates. The input part consists of a set of six tactile switches. The switches and 16x2 LCD are interfaced to microcontroller AT89C51 for various operations and displays. The provision of casting votes for the candidates has been provided through four of these switches. These switches are made active high and connected to pins 2-5 (P1^1 – P1^4) of the controller. The remaining two

89C51 Based Digital Thermometer Using DS1820

Introduction The hardware configuration when using multiple 1-Wire temperature sensors like the DS1820 is very simple, as illustrated in the block diagram below. A single-wire bus is used for communication between the microcontroller and the temperature sensor. It is also possible to power the devices direclty via this 1-Wire bus. An almost unlimited number of 1-WireTM devices can be connected to the bus because each device has a unique 64-bit ROM code identifier which is used to address each sensor   Temperature measurement using DS1820 sensor. Use of ‘1-wire’ protocol... Temperature measurement is one of the most common tasks performed by the microcontroller. A DS1820 sensor is used for measurement here. It is capable of measuring temperature in the range of -55 °C to 125 °C with 0.5 °C accuracy. For the purpose of transferring data to the microcontroller, a special type of serial communication called 1-wire is used. Due to a simple and wide use of these sensors, commands us