Skip to main content

PIE1 – Raspberry Pi Sends Live Images from Near Space

HAB (High Altitude Ballooning) is a growing hobby where enthusiasts use standard weather balloons to put small payloads typically 100g-1kg into “near space” at altitudes of around 30km or so, carrying a tracking device (so the balloon position is known throughout the flight) and usually some sensors (temperature, pressure etc) and often a video or stills camera storing to an SD card for later retrieval. The job of the tracker is to read the location from the GPS receiver, possibly also read some sensors, and then format and send a telemetry sentence to the ground over a low power radio link. Flights only happen once the predicted path is known to be safe (avoiding airports and densely populated areas for example) and permission has been gained from (in the UK) the CAA. Here the tracking system uses the 70cm radio band (around 434MHz) using RTTY to send the telemetry down to a number of ground stations run by other enthusiasts. Telemetry from all receivers is sent to a central server that then drives a live map which can be viewed by anyone with an internet connection. The system works extremely well and has been used to track payloads at distances of 800km and more even though the transmitter is limited by UK law to 10mW ERP.




PIE1 – Raspberry Pi Sends Live Images from Near Space



In early May I received my first Raspberry Pi computer, and having flown several high altitude balloons before I thought about using one as a flight computer. In almost all of my previous flights I used Arduino Mini Pro boards, and these are ideal – tiny, weigh almost nothing, simple and need very little power. I looked at the Pi and saw none of these desirable features! What I did see though was a USB port offering quick, easy and inexpensive access to a webcam, meaning that for the first time I could have live images (SSDV) sent down by my payload – something that hasn’t been done very often.
“Near Space” is a fairly hostile environment – less than 1% atmosphere, temperatures down to -50C or so – and if anything goes wrong it’s likely to stay wrong. The radio link is one-way so there’s no chance of remotely doing a “sudo reboot” let alone powering off then on again! Descent can be violent, as can the landing, so even things like SD card sockets can represent a potential failure mode. The Pi is a step up in complexity from the usual boards we use, that have no SD cards, or USB, or even an operating system, so the extra power and capability does come at a price, and the first one is an increase in the power requirement from around 60mA to over 500mA, and that of course means much higher power dissipation. People often worry about the low temperatures in near space, but when your payload is generating a few watts of power that is not likely to be a problem! I was much more concerned with how hot it was going to get inside the payload, so I added some heatsinks to the Pi:





Read More

Comments

Popular posts from this blog

PIC 16F877A Microcontroller Based Electronic Lock 16x2LCD 4x3 Keypad

 Circuit Diagram Security is a prime concern in our day-today life. Everyone wants to be as much secure as possible. An access control for doors forms a vital link in a security chain. The microcontroller based digital lock for Doors is an access control system that allows only authorized persons to access a restricted area. An electronic lock or digital lock is a device which has an electronic control assembly attached to it. They are provided with an access control system. This system allows the user to unlock the device with a password. The password is entered by making use of a keypad. The user can also set his password to ensure better protection. The major components include a Keypad, LCD and the controller PIC16F877A. This article describes the making of an electronic code lock using the 16F877A microcontroller. The system is fully controlled by the 8 bit microcontroller 16F877A which has a 8Kbytes of ROM for the program memory. The password is stored in...

Electronic Voting Machine Using 8051 Microcontroller (AT89C51)

  Circuit Electronic voting machine has now replaced the traditional mechanism of voting due to several advantages like security, automatic counting etc. This project presents a way to develop an electronic voting machine which displays the count of votes on a 16x2 LCD interface. A user can get his/her vote register through a set of switches (one for each candidate). After every cast of vote, the subsequent count can be seen on LCD. The circuit uses AT89C51 microcontroller and the code for the project has been written in C. This LCD based electronic voting machine is designed for four candidates. The input part consists of a set of six tactile switches. The switches and 16x2 LCD are interfaced to microcontroller AT89C51 for various operations and displays. The provision of casting votes for the candidates has been provided through four of these switches. These switches are made active high and connected to pins 2-5 (P1^1 – P1^4) of the controller. The remaining ...

PC Based Digital Voltmeter Using PIC 16F877A

Voltmeter C# .Net PIC, Arduino, AVR This is a simple voltmeter which measures 0-5V at a precision of 4.8 mV. This is a simple design using inbuilt ADC of PIC 16F877A. PIC 16F877A have 8 channel 10bit ADC.   This is a computer interfaced project. Measured voltage is output in serial interface software in computer. There is a serial interface circuit (MAX232) is necessary for interfacing with computer, which is not included in the circuit. Please check       PIC Serial Communication Tutorial (UART)   for the circuit and more details. Using one of the most popular 8 bit PIC 16f877A, for instance, reading the datasheet , we'll find that the ADC modules (10 bit) are controlled by four different registers. The first two, ADCON0 and ADCON1 , are used to set and start the ADC module. When high level language is used, the programmer doesn't need to care a lot of the register connected to the results because they are normally stored in...