Skip to main content

PIC 4x4 Keypad Interfacing Tutorial - MikroC




Keypad Library

The mikroC PRO for PIC provides a library for working with 4x4 keypad. The library routines can also be used with 4x1, 4x2, or 4x3 keypad. For connections explanation see schematic at the bottom of this page.
External dependencies of Keypad Library
The following variable must be defined in all projects using Keypad Library:
Description :
Example :
extern sfr char keypadPort;
Keypad Port.
char keypadPort at PORTD;
Library Routines
Keypad_Init
Prototype
void Keypad_Init(void);
Returns
Nothing.
Description
Initializes port for working with keypad.
Requires
Global variable :
  • keypadPort - Keypad port
must be defined before using this function.
Example
// Keypad module connections
char keypadPort at PORTD;
// End of keypad module connections
...
Keypad_Init();


Keypad_Key_Press
Prototype
char Keypad_Key_Press(void);
Returns
The code of a pressed key (1..16).
If no key is pressed, returns 0.
Description
Reads the key from keypad when key gets pressed.
Requires
Port needs to be initialized for working with the Keypad library, see Keypad_Init.
Example
char kp;
...
kp = Keypad_Key_Press();


Keypad_Key_Click
Prototype
char Keypad_Key_Click(void);
Returns
The code of a clicked key (1..16).
If no key is clicked, returns 0.
Description
Call to Keypad_Key_Click is a blocking call: the function waits until some key is pressed and released. When released, the function returns 1 to 16, depending on the key. If more than one key is pressed simultaneously the function will wait until all pressed keys are released. After that the function will return the code of the first pressed key.
Requires
Port needs to be initialized for working with the Keypad library, see Keypad_Init.
Example
char kp;
...
kp = Keypad_Key_Click();


Library Example
This is a simple example of using the Keypad Library. It supports keypads with 1..4 rows and 1..4 columns. The code being returned by Keypad_Key_Click() function is in range from 1..16. In this example, the code returned is transformed into ASCII codes [0..9,A..F] and displayed on Lcd. In addition, a small single-byte counter displays in the second Lcd row number of key presses.




unsigned short kp, cnt, oldstate = 0;
char txt[6];

// Keypad module connections
char  keypadPort at PORTD;
// End Keypad module connections

// LCD module connections
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direction at TRISB4_bit;
sbit LCD_EN_Direction at TRISB5_bit;
sbit LCD_D4_Direction at TRISB0_bit;
sbit LCD_D5_Direction at TRISB1_bit;
sbit LCD_D6_Direction at TRISB2_bit;
sbit LCD_D7_Direction at TRISB3_bit;
// End LCD module connections

void main() {
  cnt = 0;                                 // Reset counter
  Keypad_Init();                           // Initialize Keypad                             
  ANSEL  = 0;                              // Configure AN pins as digital I/O
  ANSELH = 0;
  Lcd_Init();                              // Initialize LCD
  Lcd_Cmd(_LCD_CLEAR);                     // Clear display
  Lcd_Cmd(_LCD_CURSOR_OFF);                // Cursor off
  Lcd_Out(1, 1, "1");
  Lcd_Out(1, 1, "Key  :");                 // Write message text on LCD
  Lcd_Out(2, 1, "Times:");

  do {
    kp = 0;                                // Reset key code variable

    // Wait for key to be pressed and released
    do
      // kp = Keypad_Key_Press();          // Store key code in kp variable
      kp = Keypad_Key_Click();             // Store key code in kp variable
    while (!kp);
   // Prepare value for output, transform key to it's ASCII value
    switch (kp) {
      //case 10: kp = 42; break;  // '*'   // Uncomment this block for keypad4x3
      //case 11: kp = 48; break;  // '0'  
      //case 12: kp = 35; break;  // '#'
      //default: kp += 48;

      case  1: kp = 49; break; // 1        // Uncomment this block for keypad4x4
      case  2: kp = 50; break; // 2
      case  3: kp = 51; break; // 3
      case  4: kp = 65; break; // A
      case  5: kp = 52; break; // 4
      case  6: kp = 53; break; // 5
      case  7: kp = 54; break; // 6
      case  8: kp = 66; break; // B       
      case  9: kp = 55; break; // 7
      case 10: kp = 56; break; // 8
      case 11: kp = 57; break; // 9
      case 12: kp = 67; break; // C
      case 13: kp = 42; break; // *
      case 14: kp = 48; break; // 0
      case 15: kp = 35; break; // #
      case 16: kp = 68; break; // D

    }

    if (kp != oldstate) {                  // Pressed key differs from previous
      cnt = 1;
      oldstate = kp;
      }
    else {                                 // Pressed key is same as previous
      cnt++;
      }

    Lcd_Chr(1, 10, kp);                    // Print key ASCII value on LCD

    if (cnt == 255) {                      // If counter varialble overflow
      cnt = 0;
      Lcd_Out(2, 10, "   ");
      }

    WordToStr(cnt, txt);                   // Transform counter value to string
    Lcd_Out(2, 10, txt);                   // Display counter value on LCD
  } while (1);
}


Courtsey : mikroc  manual


Circuit Diagram
4x4 Keypad PIC MikroC



Comments

Popular posts from this blog

PIC 16F877A Microcontroller Based Electronic Lock 16x2LCD 4x3 Keypad

 Circuit Diagram Security is a prime concern in our day-today life. Everyone wants to be as much secure as possible. An access control for doors forms a vital link in a security chain. The microcontroller based digital lock for Doors is an access control system that allows only authorized persons to access a restricted area. An electronic lock or digital lock is a device which has an electronic control assembly attached to it. They are provided with an access control system. This system allows the user to unlock the device with a password. The password is entered by making use of a keypad. The user can also set his password to ensure better protection. The major components include a Keypad, LCD and the controller PIC16F877A. This article describes the making of an electronic code lock using the 16F877A microcontroller. The system is fully controlled by the 8 bit microcontroller 16F877A which has a 8Kbytes of ROM for the program memory. The password is stored in...

Electronic Voting Machine Using 8051 Microcontroller (AT89C51)

  Circuit Electronic voting machine has now replaced the traditional mechanism of voting due to several advantages like security, automatic counting etc. This project presents a way to develop an electronic voting machine which displays the count of votes on a 16x2 LCD interface. A user can get his/her vote register through a set of switches (one for each candidate). After every cast of vote, the subsequent count can be seen on LCD. The circuit uses AT89C51 microcontroller and the code for the project has been written in C. This LCD based electronic voting machine is designed for four candidates. The input part consists of a set of six tactile switches. The switches and 16x2 LCD are interfaced to microcontroller AT89C51 for various operations and displays. The provision of casting votes for the candidates has been provided through four of these switches. These switches are made active high and connected to pins 2-5 (P1^1 – P1^4) of the controller. The remaining ...

PC Based Digital Voltmeter Using PIC 16F877A

Voltmeter C# .Net PIC, Arduino, AVR This is a simple voltmeter which measures 0-5V at a precision of 4.8 mV. This is a simple design using inbuilt ADC of PIC 16F877A. PIC 16F877A have 8 channel 10bit ADC.   This is a computer interfaced project. Measured voltage is output in serial interface software in computer. There is a serial interface circuit (MAX232) is necessary for interfacing with computer, which is not included in the circuit. Please check       PIC Serial Communication Tutorial (UART)   for the circuit and more details. Using one of the most popular 8 bit PIC 16f877A, for instance, reading the datasheet , we'll find that the ADC modules (10 bit) are controlled by four different registers. The first two, ADCON0 and ADCON1 , are used to set and start the ADC module. When high level language is used, the programmer doesn't need to care a lot of the register connected to the results because they are normally stored in...